11-6 - Simplifying Radicals

EQ: How do we simplify radicals that include fractions?

- **RADICAND** - the expression under the radical sign
- **Simplify the radicand for each expression**

a) \(\sqrt{12x} \)

b) \(\sqrt{5x + 1 - 4x} \)

- \(\sqrt{12} \)
- \(\sqrt{5x+1} \)

Review: Simplify each radical expression

1. \(-\sqrt{20} \)
2. \(\frac{x-5}{\sqrt{75}} \)
3. \(12\sqrt{24m^7n^4} \)

Simplifying radicals with fractions

- *Check for perfect squares*
- *Simplify fraction if possible (coefficients and variables)*
- *Take the square root of the numerator and denominator separately.*

a) \(\frac{32}{2} = \sqrt{16} = \sqrt{4} \)

b) \(\frac{11}{\sqrt{36}} = \frac{11}{6} \)

Simplify each radical expression

1. \(\frac{7}{\sqrt{100}} \)
2. \(\frac{32}{\sqrt{49}} \)
3. \(\sqrt{24} \)
4. \(\sqrt{12} \)

Simplify each radical expression

5. \(\sqrt{\frac{8x^{15}}{36x^6}} = \sqrt{x^{12}} = \frac{x^6}{3} \)
6. \(\sqrt{\frac{x^2}{4}} = \frac{\sqrt{x}}{2} \)
7. \(\sqrt{\frac{mn}{4c^6}} = \frac{\sqrt{mn}}{2c^3} \)
APPLICATION
A baseball diamond is a square with sides of 90 feet. How far is a throw from third base to first base? Give the answer as a radical expression in simplest form. Then estimate the length to the nearest tenth of a foot.

\[a^2 + b^2 = c^2 \]
\[90^2 + 90^2 = c^2 \]
\[16200 = c^2 \]
\[c = \sqrt{16200} \]
\[10\sqrt{162} \]
\[10 \cdot 12.72 \]
\[127.2 \text{ ft} \]

Assignment
Pg 808

#1 - 4, 11 - 23, 57 - 60

6. \[\frac{3x}{\sqrt{121}} \]

3. \[\frac{25x^5}{\sqrt{49x^2}} \]

5. \[\frac{6n}{\sqrt{45}} \]

9. \[\frac{27n}{\sqrt{100n^7}} \]

3. \[12\sqrt{24m^2n^4} \]